27 research outputs found

    A software framework for alleviating the effects of MAC-aware jamming attacks in wireless access networks

    Get PDF
    The IEEE 802.11 protocol inherently provides the same long-term throughput to all the clients associated with a given access point (AP). In this paper, we first identify a clever, low-power jamming attack that can take advantage of this behavioral trait: the placement of a lowpower jammer in a way that it affects a single legitimate client can cause starvation to all the other clients. In other words, the total throughput provided by the corresponding AP is drastically degraded. To fight against this attack, we design FIJI, a cross-layer anti-jamming system that detects such intelligent jammers and mitigates their impact on network performance. FIJI looks for anomalies in the AP load distribution to efficiently perform jammer detection. It then makes decisions with regards to optimally shaping the traffic such that: (a) the clients that are not explicitly jammed are shielded from experiencing starvation and, (b) the jammed clients receive the maximum possible throughput under the given conditions. We implement FIJI in real hardware; we evaluate its efficacy through experiments on two wireless testbeds, under different traffic scenarios, network densities and jammer locations. We perform experiments both indoors and outdoors, and we consider both WLAN and mesh deployments. Our measurements suggest that FIJI detects such jammers in realtime and alleviates their impact by allocating the available bandwidth in a fair and efficient way. © Springer Science+Business Media

    Distributed Path Authentication for Dynamic RFID-Enabled Supply Chains

    Get PDF
    Part 12: Authentication and DelegationInternational audienceIn this paper, we propose a distributed path authentication solution for dynamic RFID-enabled supply chains to address the counterfeiting problem. Compared to existing general anti-counterfeiting solutions, our solution requires non sharing of item-level RFID information among supply chain parties, thus eliminating the requirement on high network bandwidth and fine-grained access control. Our solution is secure, privacy-preserving, and practical. It leverages on the standard EPCglobal network to share information about paths and parties in path authentication. Our solution can be implemented on standard EPC class 1 generation 2 tags with only 720 bits storage and no computational capability

    Low Power DoS Attacks in Data Wireless LANs and Countermeasures

    No full text
    In this paper we investigate the resiliency to jamming of data protocols, such as IP, over Wireless LAN. We show that, on existing WLAN, an adversary can jam this protocol at a very low energy cost. Such attacks enable a set of adversary nodes disseminated over a geographical area to prevent communication, partition an ad hoc network, or force packets to be routed over adversary chosen paths. The ratio of the jamming pulses duration to the transmission duration can be as low as 10-4. We investigate and analyze the performance of using various coding schemes to improve the robustness of wireless LANs for IP packets transmission. We propose a concatenated code that is simple to decode and can maintain a low Frame Error Rate (FER) under a jamming effort ratio of 15%. We investigate the theoretical limits by analyzing the performance derived from upper bounds on binary error-control codes. We also propose an efficient anti-jamming technique for IEEE802.11b standard.

    Distributed Cooperation and Diversity for Hybrid Wireless Networks

    No full text

    An analytic evaluation of the Trickle algorithm : towards efficient, fair, fast and reliable data dissemination

    No full text
    Wireless sensor networks require communication protocols for efficiently propagating and maintaining data in a distributed fashion. Ideally, a communication protocol is able to disseminate data quickly to all nodes in the network using as few transmissions as possible, while distributing transmission load fairly. In the context of wireless sensor networks the Trickle algorithm is a popular protocol serving as the basis for many of the current communication protocols. In this study we analyze the performance of Trickle with respect to efficiency, fairness, reliability and propagation speed. Additionally, we show how small extensions to the algorithm can improve its performance
    corecore